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A program for the study of many-body correlations: matrix 
elements of the generators of U(n) 
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Chemistry Department, University of Sheffield, Sheffield S3 7HF, UK 

Received 19 September 1979 

Abstract. A procedure has been outlined for generating configuration space basis states of 
many-particle systems in which the maximal occupancy of any single-particle orbital is 
arbitrary. An efficient computer program has been developed for determining the matrix 
elements of the generators of the unitary group U(n) over configuration space basis states. 
Computer times for generating these matrix elements have been presented for specific 
examples. 

1. Introduction 

The study of electron correlation in atoms and molecules has in recent years made 
increasing use of computer programs based on unitary and permutation group methods 
(Paldus 1974, 1975, 1976, Shavitt 1978, Brooks and Schaefer 1979, Downward and 
Robb 1977, Sarma and Rettrup 1977). Efficient algorithms have been developed for 
generating the Gelfand-Zetlin basis sets (Gelfand and Zetlin 1950) spanning the 
irreducible representations (ireps), [2 1 0 - 1, of the unitary group U(n) over 
the configuration space of the electrons. In the light of these successes with many- 
electron systems, it is worth examining whether we could develop equally efficient 
algorithms in dealing with other many-fermion systems. The algebraic structure of the 
unitary group underlying these studies was investigated by a number of workers 
(Biedenharn 1963, Baird and Biedenharn 1963, Ciftan and Biedenharn 1969, 
Moshinsky 1968). General computational procedures based on these studies have 
however not received much attention. Such a program could be used to test the 
efficiency of the algebra in handling large-scale studies of many-body correlations. 

In this paper we present generalisations of some of the algorithms used in recent 
years for the study of many-electron systems. We assume that the system under 
consideration is described by a basis set of N th  rank tensors in the configuration space. 
Each of the single-particle orbitals defining the tensor space is assumed to have a 
maximal occupancy index f. This essentially means that no orbital can be more than 
f-fold occupied in the set of N th  rank tensors. This restriction implies that the 
irreducible components of U(n) into which the tensor space decomposes are described 
by Young shapes (Kaplan 1975, Hamermesh 1962) with no more than f columns. The 
index f may be conveniently designated the ‘spin’ of the particle. If we have an 
N-particle system each component of which has f ‘spin’ states, we are interested in 

N / 2 - S  2 s  n N / 2 - S  
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generating the basis states spanning the irreducible representations [ fP1,  ( f  - 
1)’*, . . . , lPf, O P f + ’ ]  of U(n) where 

and 

Given a procedure for determining these basis states, the matrix elements of the 
generators, {EL,li, j = 1, . . . , n}, of U(n) can be obtained using a well-known algebraic 
expression (Baird and Biedenharn 1963). 

The present work has been carried out in three main stages. Firstly, we have 
replaced the Gelfand representation of the basis states (Gelfand and Zetlin 1950) by 
generalised Paldus arrays (Paldus 1974). This leads to economy in storage and retrieval 
if f is small. Secondly, a procedure was developed for generating Paldus arrays 
corresponding to a specific component of the tensor space. Finally, the Baird- 
Biedenharn (1963) expression for the matrix elements of the generators of U(n) was 
adapted to suit the use of Paldus arrays in place of the Gelfand tableaux. 

In 0 2 we describe the procedure used and present the CPU times for some specific 
examples as illustrations of the efficiency of the program. A brief discussion of the 
method is presented in 8 3. 

2. Present method 

Consider an N-particle system, each component of which hasf possible ‘spin’ states. Let 
the configuration space of the system be described by n orthonormal single-particle 
basis states Ql, Qz, . , , , an. This basis set spans the carrier space V, of U(n). A 
primitive tensor basis set spanning VnON then defines a reducible configuration space 
for the N-particle system. An element of this set may be designated by the occupancy 
index of the set, (N1, Nz,  . . . , Nn) ,  where N, ~f for all i = 1, . . . , n and N, = N. In 
view of the occupancy restriction, we are interested only in the ireps [fpl(f-  
1)’* . . , l P 1 O p f + l ]  obtained in the reduction of VnON. A more compact notation for this 
irep is [ p ; ,  p i ,  . . , , pf”, P ; + ~ ]  indicating the frequency of occurrence of row lengths 
f ,  f -  1, , , . , 0 respectively in the corresponding Young shape. Since U(n) admits the 
canonical subgroup chain U(n) 3 .  . .> U(1), we find that the subgroup U(i)(l S i S n )  
can be similarly characterised by [ p i p ;  . . . pi pi+^], where 

i and p i , & ,  , . . , p f t l  are integers 2 0 .  The set of indices [ p i , p : ,  . . . , p i + 1 ]  

( i  = 1, .  . . , n )  provides a one-to-one correspondence with the rows of a Gelfand 
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tableau, so that 

P; Pz” . . .  p;+1 

p:-l p2n-l . . .  P G  

2 
p :  p :  . . .  Pffl  

p :  p :  . . .  p;+1 (3) 
The representation of the right-hand side of equation (3) may be labelled a Paldus array 
in a manner similar to the one obtained for the irep [ N / 2  - S, 2S, n -N/2 - SI of U(n) 
for describing the configuration space of electrons (Paldus 1974,1975,1976). Iff<< n, 
we find that the Paldus array requiring n (f + 1) entries is a more compact representation 
than the corresponding Gelfand tableau with n(n  + 1)/2 entries. 

Given a Gelfand tableau having specified entries in the ith row, we can obtain a 
lexically ordered set of possible (i - 1)th rows by imposing the betweenness condition 
on the weights mii such that mji a mii-l 2 mjili. Though we have not used the complete 
set of lexically ordered states spanning an irep of U(n), it is interesting to study the 
corresponding procedure for Paldus arrays. For generating such a basis we first define a 
set of partial sums for the ith row as 

Mj= (4) 
O r = l  

where 1 < i < n. We now generate the possible p j - l  ( j  = 1,2,  . , . , f +  1) for the (i - 1)th 
row as those which lead to Mj-’ satisfying Mj 3Mj-l  s M j  - 1 and subject to the 
condition Mi:: = - 1. If all Mi, ( j ’  > j )  satisfy Mj, = Mj, the last of the above 
requirements implies that we choose only that pi-’ which corresponds to Mj-’ = 
Mj - 1. This procedure leads to a branching diagram which can be best illustrated using 
an example. Consider a fifth row, [121 lo], in a Paldus array corresponding to f = 4. We 
can then generate the possible fourth rows of this array as: 

, 

/ \  [02 1 [P:P: 1: 72 T (  7( ,, 
[1210 l l I I I I l 1  ] [1201 ] [1120 3 [1111 ] [0310 ] [0301 ] [0220 ] [0211 ] 

[12100] l l l l l l l l  [12010] [11200] [11110] [03100] [03010] [02200] [02110] 

[P: 1: 

[P:P:P: I: [121 ] [120 ] [112 ] [111 3 [031 ] [030 ] [022 ] [021 1 

4 4 4 4  
[PIP2P3P4 1: 

[P:P:P:P:P2 1: 

Starting from the nth row specifying the given irep we can successively generate 
lower rows till we have scanned all of them. Using a suitable indexing system we can 
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N6=0 N,=l 
[22010] .----- < [2202 11 _I_- 

link up different rows to yield distinct lexically ordered Paldus arrays. A computer 
program has been developed for this part of the procedure. 

The dimensionality of an irep of U(n) tends to increase rapidly with increasing 
values of n. This leads to practical difficulties in using the entire configuration space 
corresponding to an irep of U(n). A better alternative would be to generate Paldus 
arrays corresponding to physically interesting allowed values of the occupancy indices 
( N I ,  Nz, . . . Nn) .  The problem then is to be able to generate the subset of Paldus arrays 
corresponding to a definite choice of these occupancy indices. We now outline a scheme 
for doing this, If a particular N, = 8,  we readily find froin equations (1) and (2) that the 
only possible (i - 1)th row resulting from [ p i p ;  . I . p ;+~]  is [p;-'p;-l  . . p i ; ; ] ,  where 
pf-' =p:( l  c jcf) and p;;; =P;+~ -1. If on the other hand N, = 1, we use the above 
(i - 1)th row as an intermediate stage and generate f new ( i  - 1)th rows by changing a 
pair of entries ( p ; ,  pjil) (1 6 jsf) at a time to ( p :  - 1, p : + l  + l ) ,  leaving all the others 
unchanged, In doing this we retain any negative entry which might have been obtained 
at the N, = 0 stage. In terms of the entries in the ith row, the possible (i - 1)th rows for 
NI = 1 are given by [ p i p ; .  . . p i -  l ~ ; + ~ ] ,  [ p i p ; .  . . p i - 1 -  Ip;+ lp;+i - 11, [ p i  - lp;  + 
1 . . . ~ ; p ; + ~  -11. If NL = 1, we terminate the above procedure and neglect those 
possibilities for the (i - 1)th row which have any negative entries. If NI > 1, we use the 
same techniques as above, but now using each of the f possibilities as intermediate 
stages. In order to avoid repetitions we use this technique for the pairs (pf, p i + 1 )  for 
1 c j cf- 1 when dealing with the first of the intermediate stages and (pf ,   pi+^) for 
1 < j < f - 2 in dealing with the second and so on, and neglect the last one obtained at 
N, = 1 level. This procedure may be readily continued for any arbitrary N,, leading 
finally to all possibilities for the (i - 1)th row. From among these we neglect those 
possibilities which contain negative entries and obtain the allowed (i - 1)th rows. The 
nature of this construction is such that the conditions set out for equation (4) are 
automatically fulfilled. This implies that the betweenness conditions for the cor- 
responding Gelfand tableaux are satisfied. The procedure may be used for each of the 
( n  - 1) rows following the top row and, using a suitable indexing system, we can 
generate the possible Paldus arrays corresponding to a given set ( N I ,  N 2 , .  . . N,). A 
computer program has been developed for doing this. In column (6 )  of table 1 we 
present the CPU times for generating Paldus arrays for all single excitations 
( N I ,  Nz ,  . . . N, Lt 1, . . . , N, F 1 . , . N,,) from a reference set (Nl, Nz, . . . N,) for an irep 
of U(9) corresponding to f = 2 ,3 ,4 ,5 ,6 .  In view of the extremely short CPU times, we 
found that it was not necessary to look for any of the simplifications of the type used by 
Shavitt and others in dealing with electrons (Shavitt 1978, Brooks and Schaefer 1979, 
Downward and Robb 1977). 

As an illustration of the procedure consider the case N ,  = 2 corresponding to the 
sixth row, [22011], of a Palduq array for f = 4. We can visualise the process leading to 
possible fifth rows as 

[ [13001] 
A r G = Z  [ [21020] 

N G = 2  

[ 2 2 - 1 2 0 ] ~  [ 13 - 1 201 
[21110]------ [I21101 

[22- 11 11 

N 6 = 2  I [13010]--- X. 
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Neglecting the first and the fifth of the final states, we obtain four allowed fifth rows 
satisfying Na = 2. 

Paldus representation for the basis states of the ireps of U(n) obtained as above may 
now be used to determine the matrix elements of the generators Eij(l S i, j S n ) .  
General expressions for these matrix elements over a Gelfand basis set were obtained 
by Moshinsky using the lowering operator technique (reference to original work in 
Moshinsky (1968)) and by Baird and Biedenharn (1963) using the hook content of Weyi 
tableaux. More recently a graphical realisation of these matrix elements was suggested 
by Sarma and Sahasrabudhe (1979) using permutation group algebra. In all cases, 
however, the final results were obtained in terms of the weights mij in the Gelfand 
tableaux. It is useful to recall the general result obtained in terms of mi, before working 
out the modifications necessary in using Paldus arrays. For Eii(i < j) we have (Baird and 
Biedenharn 1963) 

where [m’] differs from [m] in just j - i entries, having locations sl, s2, . . . s1 in the rows 
j - 1, j -2, . . . i respectively, with the difference being given by m&-, = ms,j-r + 1. The 
factors on the right side of equation ( 5 )  are given by 

1 s r : j - r  
sr+l : j  - r - 1 

subject to 
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In all the equations (6)-(8), the +(-) sign is to be used if a is less than (greater than) 
the reference indices sl, s ~ + ~ ,  sr,  or si involved in the product. In equation (7) 

A restatement of the results of equations (6)-(8) in terms of Paldus arrays now 
follows if we note that 

(i) each row of such an array contains information on the frequency of occurrence (or 
non-occurrence) of all the possible weights, 0 < mii < f ,  of the Gelfand tableaux 
consistent with a given irep of U(n). Read from left to right, the column index in the row 
of a Paldus array uniquely locates a corresponding weight in the Gelfand tableaux. 

(ii) A particular weight within an identical set can be located by defining an integer 
parameter a where a ranges over Mf-l s a  c M f ,  with the partial sums as defined in 
equation (4). These identifications permit us to restate the results of equations (6)-(8) 
in terms of Paldus arrays as 

1/2 3 [*(R -S"'-M:'..-l + a  - l)]) . (13) 
f + l  

R = l  a = ~ k _ l + l  
rI 

( a # M ~ - . 1 + 1  if R = s " ' : i )  

In the above expression the row indications for k, s, s', s", and s"' are given by the 
superscripts on the corresponding partial sum. Further, on the right of equation (12) we 
have 
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The -(+) sign is to be used on the right of equations (11)-(13) when R < s(R 3 s). The 
condition given in equation (9) still holds. 

A computer program has been developed for determining the matrix elements of 
equation (5) using the factors obtained in equations (1 1)-(14). This part of the program 
has been combined with the one described earlier for generating the basis states. Some 
test calculations have been performed to determine the efficiency of the procedure. The 
results are summarised in column (7) of table 1. 

Table 1. Timings for generating basis states and evaluating the matrix elements of the 
generators of U ( n )  for all single excitations: (NIN2. . . Ni . . . N,. . . Nn)+ 
(N1N2 . . .  N i + l  . . ,  Nj-1 . . .  N n ) , ( i , j = l , 2  , . . .  n) .  

Maximal 
single 
particle Time for 
orbital Dimension- Time for evaluation of 
occupancy Reference ality of The irep Number of generating matrix 
index occupancy configuration of U ( n )  basis states basis states elements 
(f) (NlN2. .  . N,,) space [ p y p ; .  . . pfnCl] generated (cPu-sec)t (CPU-sec)? 

2 (111111111) 73 14141 1050 1.0 57.2 

4 (332111100) 57 [11133] 1016 1.5 69.8 
3 (222221100) 57 [2223] 1218 1.4 79.4 

5 (443211000) 49 [111114] 1400 2.1 119.0 
6 (554331000) 49 [1111113] 1240 2.7 119.0 

t IBM 370/165. 

3. Discussion 

The procedure oulined in 8 2 is in three main parts. Firstly, the Gelfand representation 
was replaced by Paldus arrays leading to considerable compactness in notation when 
f << n. Secondly, a simple procedure was developed for generating the Paldus arrays 
corresponding to given ( N I ,  N2,  . . . , N,,) E V,,ON. The program using this procedure 
was found to perform efficiently for all cases studied. Finally, the Baird-Biedenharn 
(1963) expression expressed in terms of the Gelfand basis set was modified to suit 
Paldus arrays. The program for using this expression was also carried out successfully. 
As the illustrative examples demonstrate, this part of the program is equally efficient 
considering the fact that the configuration space used was strongly interacting. It can of 
course be made more efficient by simplifying equations (1 1)-( 13) for specific values off, 
as was done by Paldus (1974,1975,1976) and Shavitt (1978). Since we wished to retain 
the program in its most general form, no attempt was made to incorporate any of these 
simplifications. 

In conclusion it is to be noted that most of the physically interesting operators of 
U ( n )  are polynomials of Eii. Obvious illustrations are the pair interactions, Casimir 
invariants of U ( n )  and its physical chain of subgroups such as O(n) ,  etc (Moshinsky 
1968). Programming procedures for handling such operators are in progress at present. 
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